Files
LightlessClient/LightlessSync/ThirdParty/Nanomesh/Collections/OrderStatistics.cs
2026-01-19 09:50:54 +09:00

119 lines
3.5 KiB
C#

using System;
namespace Nanomesh
{
public static class OrderStatistics
{
private static T FindMedian<T>(T[] arr, int i, int n)
{
if (i <= n)
{
Array.Sort(arr, i, n); // Sort the array
}
else
{
Array.Sort(arr, n, i);
}
return arr[n / 2]; // Return middle element
}
// Returns k'th smallest element
// in arr[l..r] in worst case
// linear time. ASSUMPTION: ALL
// ELEMENTS IN ARR[] ARE DISTINCT
public static T FindKthSmallest<T>(T[] arr, int l, int r, int k) where T : IComparable<T>
{
// If k is smaller than
// number of elements in array
if (k > 0 && k <= r - l + 1)
{
int n = r - l + 1; // Number of elements in arr[l..r]
// Divide arr[] in groups of size 5,
// calculate median of every group
// and store it in median[] array.
int i;
// There will be floor((n+4)/5) groups;
T[] median = new T[(n + 4) / 5];
for (i = 0; i < n / 5; i++)
{
median[i] = FindMedian(arr, l + i * 5, 5);
}
// For last group with less than 5 elements
if (i * 5 < n)
{
median[i] = FindMedian(arr, l + i * 5, n % 5);
i++;
}
// Find median of all medians using recursive call.
// If median[] has only one element, then no need
// of recursive call
T medOfMed = (i == 1) ? median[i - 1] : FindKthSmallest(median, 0, i - 1, i / 2);
// Partition the array around a random element and
// get position of pivot element in sorted array
int pos = Partition(arr, l, r, medOfMed);
// If position is same as k
if (pos - l == k - 1)
{
return arr[pos];
}
if (pos - l > k - 1) // If position is more, recur for left
{
return FindKthSmallest(arr, l, pos - 1, k);
}
// Else recur for right subarray
return FindKthSmallest(arr, pos + 1, r, k - pos + l - 1);
}
// If k is more than number of elements in array
return default(T);
}
private static void Swap<T>(ref T[] arr, int i, int j)
{
T temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;
}
// It searches for x in arr[l..r], and
// partitions the array around x.
private static int Partition<T>(T[] arr, int l, int r, T x) where T : IComparable<T>
{
// Search for x in arr[l..r] and move it to end
int i;
for (i = l; i < r; i++)
{
if (arr[i].CompareTo(x) == 0)
{
break;
}
}
Swap(ref arr, i, r);
// Standard partition algorithm
i = l;
for (int j = l; j <= r - 1; j++)
{
if (arr[j].CompareTo(x) <= 0)
{
Swap(ref arr, i, j);
i++;
}
}
Swap(ref arr, i, r);
return i;
}
}
}