using System; namespace Nanomesh { public readonly struct Vector2 : IEquatable, IInterpolable { public readonly double x; public readonly double y; // Access the /x/ or /y/ component using [0] or [1] respectively. public double this[int index] { get { switch (index) { case 0: return x; case 1: return y; default: throw new IndexOutOfRangeException("Invalid Vector2 index!"); } } } // Constructs a new vector with given x, y components. public Vector2(double x, double y) { this.x = x; this.y = y; } // Linearly interpolates between two vectors. public static Vector2 Lerp(Vector2 a, Vector2 b, double t) { t = MathF.Clamp(t, 0, 1); return new Vector2( a.x + (b.x - a.x) * t, a.y + (b.y - a.y) * t ); } // Linearly interpolates between two vectors without clamping the interpolant public static Vector2 LerpUnclamped(Vector2 a, Vector2 b, double t) { return new Vector2( a.x + (b.x - a.x) * t, a.y + (b.y - a.y) * t ); } // Moves a point /current/ towards /target/. public static Vector2 MoveTowards(Vector2 current, Vector2 target, double maxDistanceDelta) { // avoid vector ops because current scripting backends are terrible at inlining double toVector_x = target.x - current.x; double toVector_y = target.y - current.y; double sqDist = toVector_x * toVector_x + toVector_y * toVector_y; if (sqDist == 0 || (maxDistanceDelta >= 0 && sqDist <= maxDistanceDelta * maxDistanceDelta)) { return target; } double dist = Math.Sqrt(sqDist); return new Vector2(current.x + toVector_x / dist * maxDistanceDelta, current.y + toVector_y / dist * maxDistanceDelta); } // Multiplies two vectors component-wise. public static Vector2 Scale(Vector2 a, Vector2 b) => new Vector2(a.x * b.x, a.y * b.y); public static Vector2 Normalize(in Vector2 value) { double mag = Magnitude(in value); if (mag > K_EPSILON) { return value / mag; } else { return Zero; } } public Vector2 Normalize() => Normalize(in this); public static double SqrMagnitude(in Vector2 a) => a.x * a.x + a.y * a.y; /// /// Returns the squared length of this vector (RO). /// public double SqrMagnitude() => SqrMagnitude(in this); public static double Magnitude(in Vector2 vector) => Math.Sqrt(SqrMagnitude(in vector)); public double Magnitude() => Magnitude(this); // used to allow Vector2s to be used as keys in hash tables public override int GetHashCode() { return x.GetHashCode() ^ (y.GetHashCode() << 2); } // also required for being able to use Vector2s as keys in hash tables public override bool Equals(object other) { if (!(other is Vector2)) { return false; } return Equals((Vector2)other); } public bool Equals(Vector2 other) { return x == other.x && y == other.y; } public static Vector2 Reflect(Vector2 inDirection, Vector2 inNormal) { double factor = -2F * Dot(inNormal, inDirection); return new Vector2(factor * inNormal.x + inDirection.x, factor * inNormal.y + inDirection.y); } public static Vector2 Perpendicular(Vector2 inDirection) { return new Vector2(-inDirection.y, inDirection.x); } /// /// Returns the dot Product of two vectors. /// /// /// /// public static double Dot(Vector2 lhs, Vector2 rhs) { return lhs.x * rhs.x + lhs.y * rhs.y; } /// /// Returns the angle in radians between /from/ and /to/. /// /// /// /// public static double AngleRadians(Vector2 from, Vector2 to) { // sqrt(a) * sqrt(b) = sqrt(a * b) -- valid for real numbers double denominator = Math.Sqrt(from.SqrMagnitude() * to.SqrMagnitude()); if (denominator < K_EPSILON_NORMAL_SQRT) { return 0F; } double dot = MathF.Clamp(Dot(from, to) / denominator, -1F, 1F); return Math.Acos(dot); } public static double AngleDegrees(Vector2 from, Vector2 to) { return AngleRadians(from, to) / MathF.PI * 180f; } /// /// Returns the signed angle in degrees between /from/ and /to/. Always returns the smallest possible angle /// /// /// /// public static double SignedAngle(Vector2 from, Vector2 to) { double unsigned_angle = AngleDegrees(from, to); double sign = Math.Sign(from.x * to.y - from.y * to.x); return unsigned_angle * sign; } /// /// Returns the distance between /a/ and /b/. /// /// /// /// public static double Distance(Vector2 a, Vector2 b) { double diff_x = a.x - b.x; double diff_y = a.y - b.y; return Math.Sqrt(diff_x * diff_x + diff_y * diff_y); } /// /// Returns a copy of /vector/ with its magnitude clamped to /maxLength/. /// /// /// /// public static Vector2 ClampMagnitude(Vector2 vector, double maxLength) { double sqrMagnitude = vector.SqrMagnitude(); if (sqrMagnitude > maxLength * maxLength) { double mag = Math.Sqrt(sqrMagnitude); //these intermediate variables force the intermediate result to be //of double precision. without this, the intermediate result can be of higher //precision, which changes behavior. double normalized_x = vector.x / mag; double normalized_y = vector.y / mag; return new Vector2(normalized_x * maxLength, normalized_y * maxLength); } return vector; } /// /// Returns a vector that is made from the smallest components of two vectors. /// /// /// /// public static Vector2 Min(Vector2 lhs, Vector2 rhs) { return new Vector2(Math.Min(lhs.x, rhs.x), Math.Min(lhs.y, rhs.y)); } /// /// Returns a vector that is made from the largest components of two vectors. /// /// /// /// public static Vector2 Max(Vector2 lhs, Vector2 rhs) { return new Vector2(Math.Max(lhs.x, rhs.x), Math.Max(lhs.y, rhs.y)); } public Vector2 Interpolate(Vector2 other, double ratio) => this * ratio + other * (1 - ratio); /// /// Adds two vectors. /// /// /// /// public static Vector2 operator +(Vector2 a, Vector2 b) { return new Vector2(a.x + b.x, a.y + b.y); } /// /// Subtracts one vector from another. /// /// /// /// public static Vector2 operator -(Vector2 a, Vector2 b) { return new Vector2(a.x - b.x, a.y - b.y); } /// /// Multiplies one vector by another. /// /// /// /// public static Vector2 operator *(Vector2 a, Vector2 b) { return new Vector2(a.x * b.x, a.y * b.y); } /// /// Divides one vector over another. /// /// /// /// public static Vector2 operator /(Vector2 a, Vector2 b) { return new Vector2(a.x / b.x, a.y / b.y); } /// /// Negates a vector. /// /// /// public static Vector2 operator -(Vector2 a) { return new Vector2(-a.x, -a.y); } /// /// Multiplies a vector by a number. /// /// /// /// public static Vector2 operator *(Vector2 a, double d) { return new Vector2(a.x * d, a.y * d); } /// /// Multiplies a vector by a number. /// /// /// /// public static Vector2 operator *(double d, Vector2 a) { return new Vector2(a.x * d, a.y * d); } /// /// Divides a vector by a number. /// /// /// /// public static Vector2 operator /(Vector2 a, double d) { return new Vector2(a.x / d, a.y / d); } /// /// Returns true if the vectors are equal. /// /// /// /// public static bool operator ==(Vector2 lhs, Vector2 rhs) { // Returns false in the presence of NaN values. double diff_x = lhs.x - rhs.x; double diff_y = lhs.y - rhs.y; return (diff_x * diff_x + diff_y * diff_y) < K_EPSILON * K_EPSILON; } /// /// Returns true if vectors are different. /// /// /// /// public static bool operator !=(Vector2 lhs, Vector2 rhs) { // Returns true in the presence of NaN values. return !(lhs == rhs); } /// /// Converts a [[Vector3]] to a Vector2. /// /// public static implicit operator Vector2(Vector3F v) { return new Vector2(v.x, v.y); } /// /// Converts a Vector2 to a [[Vector3]]. /// /// public static implicit operator Vector3(Vector2 v) { return new Vector3(v.x, v.y, 0); } public static implicit operator Vector2F(Vector2 vec) { return new Vector2F((float)vec.x, (float)vec.y); } public static explicit operator Vector2(Vector2F vec) { return new Vector2(vec.x, vec.y); } public static readonly Vector2 zeroVector = new Vector2(0F, 0F); public static readonly Vector2 oneVector = new Vector2(1F, 1F); public static readonly Vector2 upVector = new Vector2(0F, 1F); public static readonly Vector2 downVector = new Vector2(0F, -1F); public static readonly Vector2 leftVector = new Vector2(-1F, 0F); public static readonly Vector2 rightVector = new Vector2(1F, 0F); public static readonly Vector2 positiveInfinityVector = new Vector2(double.PositiveInfinity, double.PositiveInfinity); public static readonly Vector2 negativeInfinityVector = new Vector2(double.NegativeInfinity, double.NegativeInfinity); public static Vector2 Zero => zeroVector; public static Vector2 One => oneVector; public static Vector2 Up => upVector; public static Vector2 Down => downVector; public static Vector2 Left => leftVector; public static Vector2 Right => rightVector; public static Vector2 PositiveInfinity => positiveInfinityVector; public static Vector2 NegativeInfinity => negativeInfinityVector; public const double K_EPSILON = 0.00001F; public const double K_EPSILON_NORMAL_SQRT = 1e-15f; } }